Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data

نویسندگان

  • Qingting Li
  • Cuizhen Wang
  • Bing Zhang
  • Linlin Lu
چکیده

Cropland mapping via remote sensing can provide crucial information for agri-ecological studies. Time series of remote sensing imagery is particularly useful for agricultural land classification. This study investigated the synergistic use of feature selection, Object-Based Image Analysis (OBIA) segmentation and decision tree classification for cropland mapping using a finer temporal-resolution Landsat-MODIS Enhanced time series in 2007. The enhanced time series extracted 26 layers of Normalized Difference Vegetation Index (NDVI) and five NDVI Time Series Indices (TSI) in a subset of agricultural land of Southwest Missouri. A feature selection procedure using the Stepwise Discriminant Analysis (SDA) was performed, and 10 optimal features were selected as input data for OBIA segmentation, with an optimal scale parameter obtained by quantification assessment of topological and geometric object differences. Using the segmented metrics in a decision tree classifier, an overall classification accuracy of 90.87% was achieved. Our study highlights the advantage of OBIA segmentation and classification in reducing noise from in-field heterogeneity and spectral variation. The crop classification map produced at 30 m resolution provides spatial distributions of annual and perennial crops, which are valuable for agricultural monitoring and environmental assessment studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data

Mapping cropland distribution over large areas has attracted great attention in recent years, however, traditional pixel-based classification approaches produce high uncertainty in cropland area statistics. This study proposes a new approach to map fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index (EVI) and Landsat Thematic Mapper (TM) dat...

متن کامل

The Utilization of MODIS and Landsat TMETM+for Cotton Fractional Yield Estimation in Burewala

Estimates of crop yield are desirable for managing agricultural lands. Remote sensing is the one technology that can give an unbiased view of large areas, with spatially explicit information distribution and time repetition, and has thus been widely used to estimate crop yield and offers great potential for monitoring production, yet the uncertainties associated with large-scale crop yield esti...

متن کامل

Support Vector Machine Classification of Object-based Data for Crop Mapping, Using Multi-temporal Landsat Imagery

Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to d...

متن کامل

Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China

Most methods used for crop classification rely on the ground-reference data of the same year, which leads to considerable financial and labor cost. In this study, we presented a method that can avoid the requirements of a large number of ground-reference data in the classification year. Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the dominant ...

متن کامل

Monitoring of Planting Paddy Rice with Complex Cropping Pattern in the Tropical Humid Climate Region Using Landsat and Modis Data - a Case of West Java, Indonesia -

This study aimed at the development of method of monitoring paddy rice planting applicable to areas located in the tropical humid climate region. The method was integrated with two steps of procedure. As the first step, we attempted to produce land use map which discriminated paddy field using multi-temporal Landsat data. In order to remove the effect of cloud cover, a new method of land use cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015